
How to deal with count data?

Ben Maslen

Stats Central

Mark Wainwright Analytical

Centre

April 11, 2019

0.1



How to deal with count data?
• Properties of count data - GLMs and link functions

• Poisson regression

• Overdispersion

• Negative binomial regression

• offsets

• Binomial count data

• Extensions
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Example: Revegetation counts

Anthony wants to evaluate how well invertebrate communities are re-

establishing following bush regeneration efforts. Here are some worm

counts from pitfall traps across sites:

Treatment C R R R C R R R R R C R R R . . .
Count 0 3 1 3 1 2 12 1 18 0 0 5 0 2 . . .

(C=control, R=bush regen)

Is there any evidence that bush regeneration (revegetation) is working?
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Count data = Discrete Data

continuous: quantitative data that can take any value in some interval

⇒ linear models

discrete: quantitative data that takes a “countable” number of values

(e.g. 0,1,2, . . .) ⇒ generalised linear models (GLMs)

If your data are discrete but the counts are all fairly large, you can

ignore the discreteness and use linear models anyway. If you have small

counts and zeros though it is very important to use GLMs instead.
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Why does discreteness matter?

The main reason it matters is because it tends to induce a mean-

variance relationship – as the mean changes the variance changes.

When you have zeros and small counts you will have trouble getting

rid of the mean-variance relationship via transformation.

This violates the linear model assumption of constant variance.

Why does it happen? Boundaries. Often occurs within experiments

with low counts.
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Anthony’s revegetation count data (all taxa):
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GLMs – relaxing linear modelling
assumptions

Recall that linear models make the following assumptions:

1. The observed y values are independent, conditional on x

2. The y values are normally distributed with constant variance

y ∼ N (µy, σ
2)

3. straight line relationship between mean of y and each x

µy = β0 + xTβ
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Generalised linear model

Generalised linear models (GLMs) extend linear models to non-

normal data. A GLM makes the following assumptions:

1. The observed y values are independent, conditional on x

2. The y values come from a known distribution (from the expo-

nential family) with known mean-variance relationship V (µ)

3. straight line relationship between some known function of the

mean of y and each x

g(µy) = β0 + xTβ

The function g(·) is known as the link function.
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Basically, a GLM adds two features to linear models:

• a mean-variance relationship V (µ), in place of constant variance

• a link function g(·) used to transform the mean before assuming

linearity
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What distributions can I use?

Not all distributions can be used with generalised linear models, but a

few important ones for count data can:

Poisson this should be your “default” for counts

negative binomial well, this is kind of a GLM. Great for count data

which is too variable to fit a Poisson.

binomial for presence/absence data, or “x-out-of-n” counts across n

independent events.

There are more distributions that you could use...
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Mean-variance relationship

Each of these distributions assumes a special mean-variance relation-

ship for the response variable:

Poisson V (µ) = µ. Watch out for this assumption, it can be quite

restrictive.

negative binomial V (µ) = µ + φµ2. There is a parameter in there

(φ, the “overdispersion parameter”) which controls the degree to

which the data are more variable than a Poisson (Usually 0 ≤ φ < 1,

if φ = 0 then data are Poisson)

binomial V (µ) = nµ(1− µ). For presence-absence data, n = 1 so this

simplified to V (µ) = µ(1− µ)

1.10



Mean-variance assumptions for reveg counts.

Which mean-variance assumption looks more plausible?
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Binomial mean-variance relationship – note that it is exactly quadratic

V (µ) = nµ(1− µ)
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Link functions

Below are the common link functions used for different distributions.

Poisson the log-link, log(µ) = β0 + xTβ, is almost always used. This

gives us a multiplicative model, often called a “log-linear model”.

negative binomial usually the log-link, log(µ) = β0 + xTβ.

binomial the logit function logit(µ) = log( µ
1−µ) = β0 + xTβ. This is

multiplicative in terms of the “odds”.

Sometimes the probit function Φ−1(µ) where Φ is the probability

function of the standard normal.

Sometimes the complementary log-log link, log(− log(1−µ)) (if you

had Poisson log-linear counts which you truncated to pres/abs).
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Family argument

Use the family argument in the following ways:

Poisson log-linear family=poisson

logistic regression family=binomial

probit regression family=binomial(link="probit")

complementary log-log regression family=binomial(link="cloglog")

Poisson linear family=poisson(link="identity")

For the negative binomial and tweedie distributions, you need to use a

special package.

Remember to set the family argument! If you forget it, glm defaults

to family=gaussian (a linear model).
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Poisson Regression e.g.

Anthony wants to evaluate how well invertebrate communities are re-

establishing following bush regeneration efforts. Here are some worm

counts from pitfall traps across sites:

Treatment C R R R C R R R R R C R R R . . .
Count 0 3 1 3 1 2 12 1 18 0 0 5 0 2 . . .

(C=control, R=bush regen)

Is there any evidence that bush regeneration (revegetation) is working?
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Poisson Regression

You use the glm function:

> data_revS = read.csv("data/revegSmall.csv")
> data_revS$Treatment <- as.factor(data_revS$Treatment)
> hap_pois <- glm(Haplotaxida~Treatment,family="poisson",data=data_revS)
> anova(hap_pois,test="Chisq")
Analysis of Deviance Table

Model: poisson, link: log

Response: Haplotaxida

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 29 174.94
Treatment 1 31.46 28 143.48 2.036e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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GLM assumptions

Generalised linear models (GLMs) extend linear models to non-

normal data. A GLM makes the following assumptions:

1. The observed y values are independent, conditional on x

2. The y values come from a known distribution (from the expo-

nential family) with known mean-variance relationship V (µ)

3. straight line relationship between some known function of the

mean of y and each x

g(µy) = β0 + xTβ

The function g(·) is known as the link function.
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How do you check assumptions?

Don’t just look at numerical measures (residual deviance, AIC, etc )
– plot your data! As with linear models, use residual plots to checking
for no pattern. Try plot(data revS):
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Interpret residual plots

- U-shape ⇒ violation of linearity assumption

- Fan-shape ⇒ violation of mean-variance assumption
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Counts that don’t fit a Poisson distribution
- overdispersion

Poisson: V (µ) = µ Negative Binomial: V (µ) = µ + φµ2
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Counts that don’t fit a Poisson distribution
- overdispersion

At larger values of the mean, data are more variable than expected and

we have what is called ”overdispersion”. This is because the Poisson

mean variance assumption (V (µ) = µ) can be a bit restrictive.

Instead we will use the negative binomial distribution with mean vari-

ance assumption (V (µ) = µ + φµ2, with ”overdispersion parameter”

φ).
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Negative Binomial Regression

Negative binomial regression can be fitted using the glm.nb function in

the MASS package or the manyglm function in the mvabund package:

> library(mvabund)
> hapnb_many = manyglm(Haplotaxida~treatment, family="negative.binomial",
+ data=data_revS)
> plot(hapnb_many)

or

> library(MASS)
> hapnb_glm = glm.nb(Haplotaxida~treatment, data=data_revS)
> plot(hapnb_many)

Note: plot.manyglm uses Dunn-Smyth residuals which ’jitter’ around

points, which is particularly useful for Binomial 0/1 GLMs, where as-

sumptions are harder to check.
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Negative Binomial Regression

Is the negative binomial distribution producing a better model?

Poisson: Negative Binomial:
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Negative Binomial Regression
Using the glm.nb function:

> data_revS = read.csv("data/revegSmall.csv")
> data_revS$Treatment <- as.factor(data_revS$Treatment)
> library(MASS)
> hap_nb <- glm.nb(Haplotaxida~Treatment,data=data_revS)
> anova(hap_nb,test="Chisq")
Analysis of Deviance Table

Model: Negative Binomial(0.6794), link: log

Response: Haplotaxida

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 29 37.422
Treatment 1 6.6753 28 30.746 0.009776 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Is there any evidence of an effect of revegetation on worm counts?
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Inference from generalised linear
models

All the same functions as for linear models work:

Confidence intervals use the confint function

Hypothesis testing use the summary or anova function. The latter is

generally better for hypothesis testing.

Model selection similar to linear models (stepAIC, predict for cross-

validation)

1.26



Using the anova function with GLMs

The term anova is a little misleading for GLMs – technically, what we

get is an analysis of deviance table, not analysis of variance.

For GLMs we have to tell anova what test statistic to use (otherwise it

won’t use any!). Add the argument test="Chisq" – it will do likelihood

ratio tests, and compare test statistics to a chi-squared distribution to

get P -values.
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summary vs anova for GLMs

The summary function on the other hand uses Wald tests – comparing

β̂/se(β̂) to a standard normal distribution. This is less accurate, and

especially for logistic regression, can give quite different results.
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Inference for small samples

The summary and anova tests are both approximate – they work well

in large samples (well, summary can be a bit weird) but can be quite

approximate when sample size is small.

We can beat this problem exactly by calculating P -values by simulation,

specifically by resampling the data.

The simplest way to do this is using the mvabund package, which uses

resampling by default whenever you call summary or anova for a manyglm

object.
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Inference for small samples

> hapnb_many <-manyglm(Haplotaxida~Treatment,family="negative.binomial",data=dat_revS)
> anova(hapnb_many)
Time elapsed: 0 hr 0 min 0 sec
Analysis of Deviance Table

Model: manyglm(formula = Haplotaxida ~ Treatment, family = "negative.binomial",
Model: data = data)

Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 29
Treatment 28 1 5.942 0.073 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments: P-value calculated using 999 resampling iterations via PIT-trap resampling.

Is there any evidence of an effect of revegetation on worm counts?
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Offsets

Sometimes there is some variable known not just to be important to

the response, but its precise relationship with response is also known.

This most commonly happens with sampling intensity (sample twice

as hard you expect to get twice as many observations).

e.g. Anthony actually sampled five pitfall traps in nine sites, but only

four pitfall traps in a tenth site, as follows:

Treatment C R R R C R R R R R
Count 0 3 1 3 1 2 12 1 18 0

# pitfalls 5 5 5 5 5 5 5 4 5 5

How can we account for the different sampling effort at different sites

in our model?
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Offsets

Don’t just rescale or average values. This changes the distribution of

your data, and stuffs up the mean-variance relationship.

Instead, we include an offset – a predictor variable known to be exactly

proportional to the response. Because we model log(µ) in Poisson and

negative binomial regression, our offset is log(# pitfalls).

This is most easily done by adding an offset of log(pitfalls) to your

model formula using:

offset(log(pitfalls))

1.32



Offsets

> hapnb_many <-manyglm(Haplotaxida~Treatment+offset(log(pitfalls)),
+ family="negative.binomial",data=dat_revS)
> anova(hapnb_many)
Time elapsed: 0 hr 0 min 0 sec
Analysis of Deviance Table

Model: manyglm(formula = Haplotaxida ~ Treatment + offset(log(pitfalls)),
Model: family = "negative.binomial", data = data)

Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 29
Treatment 28 1 6.019 0.065 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments: P-value calculated using 999 resampling iterations via PIT-trap resampling.
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Example: Glow in the dark Guinea Pigs

Professor Puckeridge is interested in comparing the effectiveness of two

new drugs that make pets glow in the dark. He is trialing the drugs on

15 families of Guinea pigs and has counted how many siblings in each

family glow in the dark at the end of his 10 week trial period. How

can Professor Puckeridge analyse his data?

Drug A A A A A A A B B B B B B B B
Glow 7 3 5 3 3 3 6 5 5 5 4 2 3 5 12

Family size 8 9 8 7 7 3 8 5 7 7 4 5 4 6 14

(A=Lumosium Drug, B=Glowethradiatum Drug)

Is there any evidence that one drug is more effective at making guinea

pigs glow in the dark?
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Binomial Count regression

”x-out-of-n” counts across n independent events.

Binomial Distribution The probability of observing X = k successes

in n independent trials where the probability of observing a success

is p ∈ [0,1] is the following:

P (X = k) =
(n
k

)
pk(1− p)n−k.

We say X follows a binomial B(n, p) distribution.
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Binomial Count regression: Coding it

We use the glm function with the response as proportion of ”successes”
and weights equal to the total number in each trial.

> fit_glow <- glm(Glow/Total~Drug,family=binomial,
+ data = Glow_Dat,weights=Total)
> anova(fit_glow,test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: Glow/Total

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 14 24.227
Drug 1 4.3228 13 19.904 0.03761 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Is there evidence that one drug is more effective at making guinea pigs
glow in the dark?
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Binomial Count regression: Caution!

Remember that the Binomial mean-variance relationship is exactly

quadratic (V (µ) = nµ(1−µ)), which similar to Poisson regression, can
often be restrictive!
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Binomial Count regression: Solution?

This can be understood as airising because of missing predictors across

clusters.

Solution: Add observation level random effects that help account for

potential missing predictors, and relaxes the binomial mean-variance

assumption.

Can use the function glmer in package lme4 where (1|ID) represents a

random intercept for each level of ID.

Works similar to the overdispersion parameter φ in negative binomial

regression!
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Binomial Count regression: Coding it

We use the glmer function with a random intercept (1|familyID) for
each family of guinea pigs. When using anova in glmer we need to
also create a ”null” model without the predictor of interest.

> library(lme4)
> Glow_Dat$familyID <- as.factor(c(1:15))
> fit_glow_id <- glmer(Glow/Total~Drug+(1|familyID),family=binomial,
+ data = Glow_Dat,weights=Total)
> fit_glow_idnull <- glmer(Glow/Total~(1|familyID),family=binomial,
+ data = Glow_Dat,weights=Total)
> anova(fit_glow_idnull,fit_glow_id)
Data: Glow_Dat
Models:
fit_glow_idnull: Glow/Total ~ (1 | familyID)
fit_glow_id: Glow/Total ~ Drug + (1 | familyID)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
fit_glow_idnull 2 53.792 55.208 -24.896 49.792
fit_glow_id 3 52.717 54.841 -23.358 46.717 3.0753 1 0.07949 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Is there still evidence that one drug is more effective at making guinea
pigs glow in the dark?
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Binomial Count regression: Checking

How do we check if we need observation level random effects?

• Check residual vs. fitted plots and check for horizontal ellipse

shape.

• Compare information criteria (AIC, BIC etc.)
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Extensions of GLMs

There are a few important additional features and extensions of GLMs

worth knowing about.

• Zero-inflated models

• Generalised additive models

• Generalised linear mixed models

• Multivariate abundance models
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Zero-inflated models

Ecological counts often have many zeros e.g. consider Anthony’s reveg-

etation counts:

Treatment C R R R C R R R R R
Count 3 0 0 0 4 1 0 0 0 0

# pitfalls 5 5 5 5 5 5 5 4 5 5

It is tempting to use a zero-inflated model (Welsh et al. 1996) – a

model which expects more zeros than the Poisson.

For details on how to fit such models, see the VGAM and pscl packages.
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However – just because you have lots of zeros doesn’t mean that your

data are necessarily zero-inflated. (e.g. a Poisson distribution with

µ = 0.1 already expects 90% of values to be zero!)

The above cockroach data are actually very well fitted by a Poisson

distribution.

If trying out a zero-inflated model, please check that you needed it

– maybe your data aren’t actually zero-inflated (Warton, 2005)!
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Generalised additive models

Sometimes the assumption of straight-line relationship xTβ is too re-

strictive. One way to extend this is replace it with smoothers e.g.

spline smoothers.

Such models are referred to as Generalised additive models (GAMs).

For more details, see Faraway (2005). In R, these may be fitted using

the mgcv package. Note however that the mgcv package does not use

Dunn-Smyth residuals for residual plots.

N.B. It is important to remember that a “generalised linear model”

does not need to be linear: by including functions of x as predic-

tors (e.g. quadratic, cubic terms, periodic functions), you can use the

“straight line relationship” to fit some fairly non-linear functions.
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Generalised linear mixed models

Arguably the most important extension to GLMs is the inclusion of

random effects.

Sometimes you might have random factors (e.g. nested design). Gen-

eralised linear models (the glm and manyglm functions) only handle fixed

effects.

If you have random effects and a non-constant assumed mean-variance

relationship then you want to fit a generalised linear mixed model.

A good package for this, as in the linear mixed effects case, is the lme4

package.
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There aren’t really any new tricks – just use the glmer argument as

you would normally use lmer, but be sure to add a family argument.

Current limitations:

• As before, no nice residual plots (on our to-do list).

• As before, doesn’t handle family=negative.binomial with unknown

overdispersion. But you can try a workaround where you use the

Poisson with additional random effects to introduce overdispersion.

• GLMM’s can take much longer to fit and even then only give ap-

proximate answers. The mathematics of GLMM’s are way harder

then traditional GLM’s.

• There is an optional argument nAGQ that you can try for simple

models to get a better approximation for GLMMs (e.g. nAGQ=4).

1.46



Multivariate Abundance Models

If we are interested in testing for effects accross a group of measured

count variables, we can use a multivariate abundance model.

e.g. Counts of different fish species where counted in natural and ar-

tificial reefs. Researchers are interested in testing for a difference in

the fish community structure between the two reef types.

For more details see the mvabund package, there is a great video titled

”What does multivariate analysis have in common with Rick Astley”

that I would recomend watching:

https://www.youtube.com/watch?v=KnPkH6d89l4

Method was developed here at UNSW, pretty cool!
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